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Sparsity-based Ankylography for Recovering
3D molecular structures from single-shot 2D
scattered light intensity
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Deciphering the three-dimensional (3D) structure of complex molecules is of major

importance, typically accomplished with X-ray crystallography. Unfortunately, many

important molecules cannot be crystallized, hence their 3D structure is unknown.

Ankylography presents an alternative, relying on scattering an ultrashort X-ray pulse off a

single molecule before it disintegrates, measuring the far-field intensity on a two-dimensional

surface, followed by computation. However, significant information is absent due to lower

dimensionality of the measurements and the inability to measure the phase. Recent

Ankylography experiments attracted much interest, but it was counter-argued that

Ankylography is valid only for objects containing a small number of volume pixels. Here,

we propose a sparsity-based approach to reconstruct the 3D structure of molecules.

Sparsity is natural for Ankylography, because molecules can be represented compactly in

stoichiometric basis. Utilizing sparsity, we surpass current limits on recoverable information

by orders of magnitude, paving the way for deciphering the 3D structure of macromolecules.
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R
ecovering the three-dimensional (3D) structure of
biological molecules is of paramount importance. For
example, protein characterization plays a key role in the

field of structural proteomics1–3. Knowing the protein structure
may provide further understating of the function and mechanism
even for proteins whose biochemical function is known4.
The main methodology used today to recover 3D structure of
molecules is X-ray crystallography, which requires crystallization
of the probed molecules. This method relies on X-ray diffraction
from a periodic structure, which averages over many molecules
making up the ‘molecular crystal’. However, the molecules in
such a structure are not situated in the same exact position
and alignment in all unit cells, hence this method fundamentally
cannot provide sufficient resolution in the recovered 3D
structure of the molecule. Moreover, there is an additional even
greater problem: while small molecules (having few degrees of
conformational freedom) may be crystallized by various methods,
such as chemical vapour deposition5 and re-crystallization6, for
macromolecules, especially membrane proteins, crystallization is
much more problematic7. In fact, thus far, crystallization attempts
have been unsuccessful for most of the membrane proteins; as
such, the 3D structure of many bio-molecules is still unknown7.
Clearly, developing a method that could decipher the 3D
structure of a single protein molecule is nothing less than a
dream. In fact, no current method can do that even in theory.

In the past few years, it has been proposed to study such
molecules using imaging with X-ray laser pulses6,8–10, whose
wavelength has the desired resolution. However, since X-ray light
ionizes all biological molecules and changes their molecular
structure, X-ray experiments on organic molecules cannot be
carried out with continuous wave (CW) radiation. Rather, this
has to be performed with ultrashort laser pulses. Moreover,
biological molecules disintegrate after the first pulse, and
therefore the information (scattered light) necessary for
recovering the structure must be collected either in a single
shot (the basis of Ankylography), or in multiple shots—each
probing a new molecule of the same kind, followed by a
calibration procedure (registration) since the molecule in each
shot is inevitably rotated in 3D space. Such ideas have indeed
been suggested11–13. Experimentally, there were successful
attempts using single-shot X-ray pulses scattered off aerosol
particles, demonstrating the ability to determine the orientation
of two large polystyrene spheres14 and finding the two-
dimensional (2D) projection of several particles15. Going back
to a single biological molecule, when a single ultrashort X-ray
pulse is launched at such a molecule, and when the pulse is short
enough—the flux of photons scattered off the molecule before it
disintegrates carries the information about the structure16,17. The
3D structure of the molecule can then be recovered
algorithmically from this single measurement, in a process
called Ankylography10. This approach for deciphering the
molecular structure relies on the ability to use ultrashort
(femtosecond) laser pulses in the X-ray regime. Indeed, recent
developments have enabled the construction of a new X-ray free
electron laser (XFEL) facility, which emits a beam with high
coherence and facilitates access to atomic scale imaging18,19.
In fact, the wavelength of X-ray laser flashes are so short that even
atomic details may one day become discernible (lB0.5 Å–6 nm).
Another source of ultrashort X-ray pulses is based on the high-
harmonic generation process, which already enables coherent
experiments in the X-ray regime20.

Desirably, the coherent scattering measurements should be
taken at the surface corresponding to the Ewald sphere21 (a sphere
in the Fourier domain; see explanation in the Supplementary
Information). But even in this case, such a single-shot 2D
measurement is still missing a very large part of the information

necessary to recover the 3D structure. Namely, the phase
information is missing, and only 2D data is obtained. Therefore,
Ankylography describes an algorithmic procedure whose goal is to
recover 3D information from a single-shot magnitude-only
measurement taken on a 2D surface corresponding to the Ewald
sphere of the sought information. The algorithmic methodology of
Ankylography relies on phase-retrieval algorithms, known for
several decades22,23, which have recently found their way into
applications with coherent X-ray radiation24,25. Still, achieving
phase-retrieval for 3D structures from 2D measurements, as
Ankylography is attempting to do, is a formidable challenge.

In spite of these problems in trying to recover the 3D structure
from highly incomplete measurements, a visionary proof-of-
concept Ankylography experiment has recently been demonstrated,
attracting much interest10. However, the excitement has not been
unanimous among researchers. For example, in a recent exchange
in Nature magazine researchers compared the idea, to pulling a 3D
rabbit out of a 2D hat26. The original Ankylographic method was
believed to work for only objects containing o153 voxels
(volumetric picture element)26,27, but actually the original paper
has demonstrated the recovery of larger objects, with the current
state of the art being 32� 32� 20 voxels. While researchers have
not yet reached a consensus on exact limits of Ankylography10,
serious doubts were cast on its feasibility28–30, uniqueness and
stability31,32. Moreover, it was claimed that, Ankylography will not
work in the absence of additional constraints28. Notwithstanding
these important arguments, recent experiments have demonstrated
good progress in Ankylography, but all under stringent
assumptions on the symmetry of the recovered structures33 or
multiple measurements34.

Here, we propose and numerically demonstrate a new
algorithmic paradigm for reconstructing 3D objects from their
scattered 2D intensity. Our approach is based on sparsity: prior
knowledge that the information is sparse in a known basis. In our
context, sparsity is manifested in the fact that the molecule
effectively occupies small number of degrees of freedom (d.f.)
(because molecules are made of atoms), and that the chemical
composition (stoichiometry) of the molecule is known. As such,
the prior knowledge of sparsity can be utilized to recover the
‘signal’ from highly incomplete measurements. Using recently
developed algorithmic tools for sparsity-based phase retrieval35,
we demonstrate numerically the ability to determine the atomic
structures of various complex organic molecules, such as peptides.
This illustrates that sparsity and optimization techniques enable
surpassing current limits on the recoverable information in
Ankylography, by orders of magnitude. We test the performance
of our methodology with respect to sparsity (number of atoms)
and noise, and conclude that sparsity can pave the way to
algorithmic reconstruction of the 3D structure of molecules from
a single measurement of the photon flux in the optical far field.

Results
The sparsity-based concept. Before going into the mathematical
details of sparsity-based Ankylography, let us explain the logic
of our approach and its background. In Ankylography, a major
part of the information is lost due to physical limitations,
which leads to dimension deficiency and to lack of phase
information in the measured data. In the most general case,
it is possible to recover 3D information by taking multiple
projection measurements and appropriate signal processing.
Common methods to do that include computed tomography36

(CT), equally sloped tomography37 and more. However, here,
traditional methods to recover 3D information from 2D
measurements cannot be employed, because they require
multiple measurements from different projections, while in the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8950

2 NATURE COMMUNICATIONS | 6:7950 | DOI: 10.1038/ncomms8950 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


current physical problem, multiple projections are extremely hard
(if not impossible) to realize in experiments. This is the
motivation for Ankylography: attempting to rely strictly on data
acquired in a single-shot experiment, in spite of the fact that a
large part of the information is missing in the measurements.
This is where sparsity comes into play. As we show below, the
underlying problem typically features only a small number of d.f..
As such, our use of sparsity is natural, relying on the logic of
our earlier work on sparsity-based subwavelength imaging38,39

and super-resolution40–42, and on sparsity-based phase
retrieval35,39,41,42. The theoretical framework underlying the
recovery procedure is borrowed from the emerging field of
compressed sensing43–45. The main theme of compressed sensing
is to reduce the number of acquired measurements of a signal,
while still being able to accurately recover it by relying on the
fact that the signal is described by a small number of d.f.
Here, our goal is to recover the complete information from
an inherently incomplete set of (quadratic) measurements.
To this end, we adapt the recently proposed sparsity-based
phase-retrieval technique (called GESPAR35) to our setting.

Physical setting and sparse representation of the physical signal.
The general physical setting for Ankylography is illustrated in
Fig. 1. A coherent ultrashort laser pulse of central wavelength l
and relatively narrow bandwidth dl (such that dl

l � 10� 4) is
incident upon a molecule with a 3D structure we wish to recover.
The light is scattered from the molecule within the ultrashort
duration of the pulse (a few femtoseconds), but immediately
thereafter the molecule disintegrates, such that the only mea-
surements available are those taken from the scattered light in
this single-shot experiment. The detectors can be positioned on
the Ewald sphere, or more practically, use a planar camera and
correct for the curvature. The 3D effective potential (core electron
charge density) of the molecule, which is the source for X-ray
scattering, can be described as a sum over known basis functions.
For simplicity, we describe each atom as a sphere with its covalent
radius46, although a more mathematically accurate description
would be provided by a set of known, spherically symmetric
functions47. It is important to note that, in spite of the fact that
we described the molecule with simple basis functions, our
methodology is general, and is not limited to a particular basis
(see example in Fig. 5). In this scheme, the molecule resembles a
set of hovering spheres. The 3D scattering potential of the
molecule is given by the scalar function

f rð Þ ¼
XT

j¼1

XSj

n¼1
aj

nUj r� rj
n

� �
; ð1Þ

where the first summation is over the T kinds of elements
comprising the molecule, and Uj(r) is the potential related to the
j-th element. The second summation is over Sj, the number of
atoms of the j-th element, with rj

n and aj
n being the 3D position

and amplitude of the n-th atomic wavefunction of the j-th
element. Physically, aj

n manifests the charge density in the core
electrons of that atom, which is what scatters X-ray radiation46.
For example, U1 reflects the potential of the 1st element in the
molecule (say, carbon), while r1

3 and a1
3 are the 3D position

and the amplitude of the third carbon atom. Importantly,
the chemical composition of the molecule is known (number
of atoms of each element) from stoichiometry, as well
as the covalent radius associated with each element. Hence, the
only unknowns are the relative positions of the atoms, as
described by the centre positions of the spheres, rj

n, and the
amplitudes aj

n. Altogether, the number of unknowns in the
problem is relatively small, which is why sparsity-based methods
can be very effective.

The scattered light intensity, which corresponds to the
measured data, resides on a spherical surface of a large radius
centred on the molecule, in the far field of the 3D image.
Theoretically, to first order in perturbation theory21 the scattered
field intensity is proportional to the 3D Fourier transform
absolute value squared of the scattering potential, measured on
the surface of a sphere called ‘the Ewald sphere’21:

I y;jð Þ ¼
ZZZ

V
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e
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����
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Here, I(y, j) is proportional to the intensity of the electro-
magmatic waves as a function of the angles in spherical
coordinates, measured relative to the incident wave direction (z),
and r is the coordinate vector. The proportionality coefficient and
further details are provided in the Supplementary Information
section (equation (1) there). The integration is taken over the
volume defined by the spatial extent of the object (V).

Problem formulation. To set up the problem as a sparse recovery
problem, we define a 3D grid (of M sites) for the possible
positions of each atom, repeating the grid for T different
elements separately. We arrange the unknowns in a vector x
(where, � represents a ‘numeric column vector’: a series of values),

whose entries are x ¼ x1H x2H
. . . xT H� �H

(where the
superscript H represents conjugate transpose). Here xj is the
vector of unknowns, of size M �T, associated with element j
described on the M grid sites. The m-th entry of xj is xj

m, where
xj

m ¼ 0 if no atom of element j resides at site m, while xj
m 6¼ 0

means that such an atom resides at this site. The measurement
vector is denoted by C, where the value of the l-th entry, Cl, is
proportional to the intensity at angles yl and jl (Cl¼ I(yl, jl)),
with L being the total number of measurements, namely, of the
intensity readings in the detectors. The measurement of the l-th

detector is Cl ¼ bH
l x

�� ��2, where the vector bH
l represents one

(vector) term in the transfer function of the system,
A ¼ b1 b2 � � � bLð ÞH , which is simply the 3D Fourier
transform operator measured on the Ewald sphere.

With this notation, our mathematical problem can be
described as follows:

x̂ ¼ argminx

XL

l¼1
bH

l x
�� ��2�Cl

� �2
; Subject to 8j; xj

�� ��
0¼ Sj ð3Þ
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Figure 1 | The physical setting for Ankylography. An ultrashort X-ray laser

pulse is incident on a molecule, which scatters the photons before it

disintegrates. The intensity of the scattered light is measured on a sphere in

the optical far field, and from it the 3D structure of the molecule is

computed.
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where �k k0 is the L0 norm which counts the number of non-zero
entries in the vector. Here, Sj is the number of atoms of the j-th
element, which is assumed to be known from stoichiometry. Note
that equation (3) is a difficult problem to solve—there is no
guarantee for a unique solution, and furthermore, no assured
method to find a global minimum. This is where the power of the
sparsity assumption comes in: the fact that the solution is known
to be sparse, (that is, that Sj are small) allows us to utilize recently
developed methods that solve sparse quadratic problems such as
this one. Specifically, to find a sparse solution to equation (3), we
use the GESPAR35 method with the set of matrices blb

H
l relevant

to our problem. Sparsity-based Ankylography requires some
modification to the formulation in ref. 35. Our algorithm is
described in detail in the Methods section.

Comparing our sparsity-based technique with the HIO algorithm.
A typical example is shown in Figs 2a and 3a, where we simulate
the recovery of the 3D structure of the amino acid threonine. This
molecule, sketched in Fig. 1 and displayed more clearly in Fig. 3a,
has 17 atoms: four carbons (red spheres), one nitrogen (orange
sphere), three oxygens (light green spheres) and nine hydrogens
(dark blue). For clarity, we plot the 3D structure streamlined
sequentially, and assign to it a one-dimensional grid index as
shown in Fig. 2a. In this example, the position of each of the
atoms is marked by a circle of its associated colour on the 93 grid,
where the grid is considerably denser than the radius of the
smallest atom (see Supplementary Information). The vertical axis
provides the amplitude, which reflects the effective charge density
associated with each atom.

First, we test the ability of the current Ankylography algorithm
(used in Ref. 10) to recover the 3D structure of threonine. To do
that, we use a slightly modified version of the algorithm used in
ref. 10 and available at http://www.physics.ucla.edu/research/
imaging/Ankylography/index.htm. Essentially, this is the
standard hybrid input–output (HIO) method22,23, which is
commonly used for phase retrieval. As a model for the sought
information, we insert the set of hovering spheres (defining
threonine) into the algorithm. The HIO algorithm is basically
iterating Fourier transforms back and forth between the object and

the Fourier domains, using the measured data (absolute value of
the 3D Fourier transform), and applying prior knowledge on the
‘support’ of the object (the known region within which the
molecule resides). When we attempt to use the HIO algorithm for
Ankylography as in ref. 10, we have to represent the 3D
information with 553 voxels (volume pixels), for the sake of
sufficient resolution. This attempt to reconstruct the 3D structure
of threonine has completely failed: as argued in the Comment26

and Reply27, this method is not expected to work because the
number of voxels greatly exceeds 32X32X20, which is the current
state of the art in Ankylography. Following this unsuccessful
attempt, it is natural to try using the HIO algorithm with the
additional prior information that the object (the molecule) can be
represented as a set of spheres. The result is shown in Fig. 2b: this
attempt also fails, in spite of the additional prior information. The
HIO algorithm converges to a solution occupying all the possible
number of d.f. (that is, the grid in Fig. 2b is fully populated), which
is clearly an erroneous solution.

This is where sparsity makes the big difference. In sharp
contrast to the other attempts, our sparsity-based GESPAR
algorithm provides excellent reconstruction, as shown by the
reconstruction on the streamline grid in Fig. 2c, and by the visual
3D plot of Fig. 3b. See further details on the algorithm in the
Methods section. Clearly, sparsity-based Ankylography can
recover the 3D structure of molecules of much greater complexity
and details than ever anticipated from Ankylography.

It is essential at this point to elucidate the general role of
sparsity (rather than the specific algorithm), in our successful
reconstruction, where the standard HIO algorithm fails. To do
that, we add sparsity to the HIO algorithm, as prior information.
More specifically, in every iteration of the HIO algorithm, we
enforce the 3D image to be sparse under the underlying basis
functions (the set of spheres) by thresholding the coefficients48.
The result is shown in Figs 2d and 3c. Examining the result, it is
clear that adding sparsity constraints to the HIO algorithm results
in a huge improvement, but the reconstruction is still poor.
Clearly, GESPAR outperforms the sparse HIO approach,
consistent with ref. 35.

Following this example, and many other examples we have
simulated, several conclusions can be drawn. First, Ankylography
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Figure 2 | Ankylographic reconstruction of the threonine molecule. (a) True 3D positions of the atoms of threonine, displayed in a one-dimensional grid

index. Each atom is marked by a circle coloured according to its type (carbon, nitrogen, oxygen or hydrogen), with the vertical axis marking the amplitude,

which reflects the charge density in that type. (b) The reconstructed molecule using the HIO algorithm taken from ref. 10. (c) Our sparsity-based

reconstruction using the GESPAR algorithm. (d) Reconstruction with HIO while enforcing sparsity in the algorithm.
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features a small number of d.f., hence it is amenable to
algorithmic methods relying on sparsity. Second, our current
sparsity-based phase-retrieval algorithmic methodology enables
the recovery of the 3D structure of molecules occupying two
orders of magnitude more voxels than what Ankylography can
handle without sparsity10. In fact, our sparsity-based method has
no upper limit on the size of the molecules. Last but not least, we
emphasize that it is indeed the sparsity concept making this
recovery possible, as we have shown that adding sparsity to
standard methods considerably improves their performance.
Altogether, it is clear that sparsity significantly improves
Ankylography, making it a highly promising method in the
next generation of structural biology experiments.

Performance of our sparsity-based Ankylography algorithm.
With noise robustness being a major concern regarding the
performance limits of Ankylography, it is essential to study the
performance of our technique in a statistical fashion, in terms of
the level of sparsity and permissible noise levels. To do that, we
test our algorithm on 600 examples, under different conditions of
signal-to-noise ratio (SNR) and optical wavelength. Importantly,
we examine the algorithm in a realistic scenario, where the
molecule is not restricted to any particular grid, while the
recovery is made on a fine 3D grid (four 1213 basis functions),
such that the radius of the smallest atom (hydrogen) is three
times larger than the grid unit. Further details on these simula-
tions are provided in the Methods section. The results are shown
in Fig. 4, which displays the reconstruction error as a function of
sparsity (total number of atoms). Here, the normalized recon-
struction error (a number between 0 and 1) is defined as

E ¼ 1� fsource; frecovery
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsource; fsourceihfrecovery; frecovery
� 	q ð4Þ

where E is the error, fsource is the original 3D image (defined
above), frecovery is the image recovered from the 2D intensity
pattern given by equation (2), and �; �h i is the inner product
operator. In these simulations, we use white noise (added to
I(y,j)) distributed uniformly on the sphere defining the
measured data (assuming the noise originates from isotropic
volume scattering). The noise level, N, is defined as the fraction of
noise to the total power of the scattered light (the measurements).
The values we use in the simulations yield SNR that is
much smaller than the SNR taken in ref. 10. Figure 4a shows

the reconstruction error as a function of sparsity for three
wavelengths. Expectedly, the performance is better at shorter
wavelengths, which yields higher resolution. Figure 4b shows the
reconstruction error as a function of sparsity for various noise
levels at wavelength of 0.35 Å. This wavelength is chosen such
that it corresponds to 1/3 of the finest resolution of our infor-
mation (the smallest distance between centres of spheres). The
conclusion drawn from these figures is that our method work well
under realistic conditions. For example, for a noise level of
N¼ 0.001 and l¼ 0.35 Å, the algorithm performs well as long as
the total number of atoms is smaller than B20.

Discussion
The simulations indicate that increasing the SNR is of major
importance. The challenge in doing that is the photon flux at
short X-ray wavelengths. The current XFEL emits B1012 photons
at every pulse; however, numerical simulations have indicated
that the combination of self-seeding and undulator tapering
techniques can increase the pulse intensity by two orders of
magnitude49. Furthermore, since photons are bosons, there is no
fundamental limit on the pulse intensity, and it is expected that
the intensity of XFEL will continue to increase as new techniques
are being developed. As such, the SNR within which our sparsity-
based method can recover structures of single molecules is within
reach in the near future. Importantly, proteins have large
scattering cross-sections, scattering more photons than a single
amino acid, which makes our method viable especially for
proteins (which contain multiple amino acids) with the present
technology.

Finally, we note that our sparsity-based method is demon-
strated here for the case where the signal sparsity corresponds to a
small number of atoms. However, the method is applicable for
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Figure 3 | Ankylographic reconstruction of the 3D structure of the

threonine molecule. (a) The original 3D structure of threonine. (b) Sparse

reconstruction using our sparsity-based method, GESPAR. (c) Sparse

reconstruction performed by introducing sparsity into the HIO algorithm

used in ref. 10. Adding the sparsity constraints to HIO leads to major

improvement in the reconstruction, but the recovery quality is still inferior

compared with GESPAR. Using sparsity-based methodology facilitates

correct reconstruction, as shown in (b). The different radii of the spheres

represent the atoms, from largest to smallest, carbon, nitrogen, oxygen and

hydrogen. The colours represent the charge density of the atoms, from

highest to lowest (red, orange, yellow, green, blue and light purple).

Specifically, the light purple spheres in c are artifacts of the HIO algorithm.
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much more general scenarios—for example, when the sparsity is
in the number of amino acids, as is the case for many proteins of
interest. In this case, the different ‘building blocks’ to be localized
and oriented are the known amino acids from which the protein
is composed, optimally—along with their possible conformations.
Figure 5 shows the reconstruction of the 3D structure of a peptide
molecule which is a combination of amino acids with peptide
bonds. The molecule is a tripeptide and is composed by two
glycine and one alanine amino acids. To reconstruct this
structure, we use our sparsity-based procedure implemented on
the basis of amino acids that spans all positions and rotations.
Importantly, using additional prior knowledge on the amino acid
bonds (protein conformation such as Ramachandran plot50) and
assigning a binary value for every basis element (instead of
determining their amplitude) further reduces the number of d.f.
dramatically, and can allow the reconstruction of significantly
larger structure than what we show in Fig. 5. Our method is
actually expected to perform much better for large proteins
because these have larger cross-sections, and therefore scatter
more photons and increase the SNR. Moreover, the recovery of
structures made of large basis elements is possible with a longer
wavelength, hence, amino acids of typical size of several angstrom
will require the wavelength to be of the same order, up to 10 times
larger than for Figs 2–4, where the X-ray laser technology is more
mature.

In conclusion, we suggest a new approach to recover the 3D
structure of molecules using Ankylography. Our sparsity-based
methodology enables deciphering 3D structures of bio-molecules
in a single-shot X-ray laser pulse, and exceeds the current limit of
recovered information by orders of magnitude. We have
demonstrated the reconstruction of a single amino acid and of
a tripeptide, with the recovery methodology implemented on the
basis of amino acids. These examples highlight the strength of the
sparsity-based Ankylography concept and also demonstrate that
it is actually easier to apply it to larger objects. The last example
proves the generality of sparsity-based Ankylography and
provides an avenue for the future of structural biology. With
that, sparsity-based Ankylography can reach the level it can
overcome the current bottleneck of structural biology.

Methods
Mathematical formulation. Our mathematical problem amounts to construction
of a 3D sparse signal from the Fourier magnitude on the Ewald’s sphere.

Of course, when the majority of the information is lost, precise reconstruction is
not possible, unless we have, or may assume, some additional information about

the sought signal. In fact, the problem is even more difficult as the measurements
contain noise. We assume that the scattered electro-magmatic field can be
approximated adequately (hereafter, this relation is denoted by D) by means of
known generating functions describing spheres Uj(r) of radius Rj. In other words,
we want to reconstruct a 3D optical image assuming that it is comprised of a small
known number of (different) spheres of known radii, as described in the Results
section. Every kind of sphere Uj(r) (identified by its radius Rj) corresponds to a
different atomic element (j, in this case), where the elements are known, and also
how many atoms are there of each element. We emphasize that the reconstruction
is done on a 3D grid, while the spheres themselves do not need to reside on any
grid at all: they reflect the actual structure of the molecule which does not
necessarily reside on a known grid.

As we already mentioned, the input to the algorithm is the 3D Fourier
magnitude, sampled on the Ewald sphere. The output of the algorithm should be
the positions of all of the atoms, and their corresponding radii.

Mathematically, the molecule is defined in equation (1), which in the spatial
frequency domain yields

f̂ nð Þ ¼ F f rð Þf g nð Þ ¼
XT

j¼1

XSj

n¼1
aj

n
Rj

nj j

� �3
2

J3
2

2pRj nj j
� �

e2pin�rj
n ð5Þ

where, Jnð�Þ is Bessel function of order n. We define Û j nð Þ ¼ Rj

nj j

� �3
2
J3

2
2pRj nj jð Þ as

generating functions in the frequency domain.
As described in the Results section, we define a 3D grid (of M sites) by the set

qmf gM
m¼1 for the possible positions of each atom for T different elements, and a set

of sampling points (spatial frequencies) nlf gL
l¼1 (related to the angles on the Ewald

sphere), defined as nl ¼ ðsinyl cosjl
l ; sinyl sinjl

l ; cosyl � 1
l Þ. We arrange the unknowns in a

vector x (of size M �T), whose entries are x ¼ ð x1H x2H
. . . xT H ÞH

(where the superscript H represents conjugate transpose), where xj is the
vector of unknowns associated with element j described on the M grid sites.
Here, the m-th entry in xj represents the amplitude of j-th element at the m-th site.
Note that frj

ng not necessarily reside on the grid qmf gM
m¼1. But if it is on the

grid, then we can represent f̂ nlð Þ as an inner product. To do that we define
the vector bj

l ¼ ð Û j nlð Þe2pinl �q1 Ûj nlð Þe2pinl �q2 � � � Û j nlð Þe2pinl �qM ÞH and

bl ¼ b1
l

H b2
l

H
� � � bT

l
H

� �H
. The measured signal is therefore

f̂ nlð Þ ¼
XT

j¼1
bjH

l xj ¼ bH
l x ð6Þ

While the sensing matrix is

A ¼ A1 A2 � � � AT
� �

ð7Þ

where, Aj ¼ ð bj
1 bj

2 � � � bj
L
ÞH . The rows of A relate to sampling frequencies

(total of L rows) and the columns correspond to different elements (total M �T
rows). For example, the (l, Mþ 11) entry, Û j nlð Þe2pinl �q11 , is related to a sphere of
element #2 located at q11 and sampled at the spatial frequency nl. The
measurements vector is denoted by C, where the value of the l-th entry,

Cl ¼ f̂ nlð Þ
��� ���2¼ xH blb

H
l x.

Now that we have mathematical representation of the measurements, we
consider additional (spatially independent) white noise.

C ¼ Ax
��� ���2 þ n ð8Þ

The noise level, N ¼ En
Es

, is the fraction of the noise power to the total power of the

scattered light in the measurements surface, where En ¼
R 2p

0 dj
R p

0 dy sin yð Þ
n y;jð Þj j2
� 	

(where �h i is the expectation value) and Es ¼
R 2p

0 dj
R p

0 dy
sin yð Þ I y;jð Þj j2. The signal power taken here also includes the scattered field at
small angles y (low spatial frequencies on the Ewald sphere), which cannot be
measured (because the detectors at those angles are saturated by the incident light
beam) but carry most of the energy. The values we use for the noise in the
simulations yield SNR that is much smaller than the SNR taken in10, yet, as shown
in the Results section, our sparsity-based approach is able to recover the 3D
structures much better and with information capacity larger by orders of
magnitude.

Technically, we seek the vector x that conforms to the measurements
(equation (9)), and at the same time has a known number of units of each element,
for example, five atoms of the element carbon. We define the objective as

J xð Þ ¼
XL

l¼1
xH blb

H
l x�Cl

� �2 ð9Þ

and solve the following optimization problem:

x̂ ¼ argminxJ xð Þ Subject to 8j; k xj
0 k¼ Sj ð10Þ

For the sake of further use, the derivative of the objective is calculated below.

rJ xð Þ ¼ @J xð Þ
@x
¼ 4

XL

l¼1
xH blb

H
l x�Cl

� �
< blb

H
l

� �� �
x ð11Þ

Glycine-glycine-alanine tripeptide 

Glycine

Glycine

Alanine

Figure 5 | Sparsity-based reconstruction of a glycine–glycine–alanine

tripeptide. The plot shows a glycine–glycine–alanine tripeptide, which

consist of three amino acids two glycine and one alanine. The simulated

reconstruction procedure employs 1 Å wavelength, by using a basis of

amino acids, which has freedom of translation and freedom of rotation.

The original 3D structure of this molecule looks virtually identical to the

reconstruction, to within minute errors in the reconstructed positions (up to

a few %). The atoms are represented by the spheres of different radii and

the colours represent the charge densities, as in Fig. 3.
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Description of the algorithm. In order to solve this problem, we use a modified
version of a new efficient (greedy) technique for sparsity-based phase retrieval,
called GESPAR. The recovery of the unknown vector from the set of equations in
equation (9) is an ill-posed problem. However, we have the prior information that
our input signal is sparse. Relying on recent work35,39,41,42 dealing with the similar
problem of finding sparse solutions to the phase-retrieval problem (which
constitutes a quadratic compressed sensing problem)—we employ the GESPAR
algorithm presented in35. GESPAR was originally intended to solve the sparse
phase-retrieval problem of recovering a sparse signal from measurements of its
Fourier magnitude, but it can also be used to solve the more general sparse
quadratic problem35.

In order to find a sparse solution to equation (1), we use GESPAR with the set
of matrices blb

H
l . The algorithm requires modification to the formulation in35

(in addition to defining blb
H
l to correspond to our system). The stages in

sparsity-based Ankylography are summarized below (for a more detailed
description of the GESPAR algorithm see35):

Algorithm: Ankylography GESPAR
Input: Measurements Clf gL

l¼1 and sampling matrices blb
H
l

 �L

l¼1.
Initialize: Set empty support s ¼+ and initial guess xs ¼ xs0 ¼ 0.
Loop: while, the cost function is improved (that is, J xs0ð ÞoJ xsð Þ) or support

requirement is not satisfied yet (that is, 8t; xjk k0¼ Sj) do
Support update:
Given the support s, minimizing J xsð Þ reduces to a nonlinear least-squares

problem, which we solve by the damped-Gauss–Newton algorithm51 commonly
used for this type of problems. The damped-Gauss–Newton procedure produces an
estimate xs .

Perform a local search, an index kj of element j containing a high absolute
gradient value. Add kj to the support s0 ¼ s[ kj

 �
and perform a damped-Gauss–

Newton procedure, given the new support and calculate the cost function J xs0ð Þ.
Add one atom of the element that minimizes the objective J xð Þ the most, and

that at the same time satisfies xjk k0� Sj .
Index swapping:
Calculate the cost function gradient rJ xsð Þð Þ around the current estimate.
Perform a local search by index swapping, an index ij of element j from the

support containing a small absolute valued element with an index kj of element j
containing a high absolute gradient value, where the gradient is calculated after
zeroing the index ij. This step differs from GESPAR because of the correlativity of
the different entries in sparsity-based Ankylography where originally the bases
functions in GESPAR are orthogonal. Perform a damped-Gauss–Newton
procedure for the support s0 ¼ s[ kj

 �
= ij
 �

and calculate the cost function J xs0ð Þ.
Go over all the different elements, j¼ 1, 2, 3yT and find the support s0 that

minimize the objective J xs0ð Þð Þ the most and substitute it as the new support s and
xs ¼ xs0 . If the Index swapping step succeeded do it again.

Output: The estimated locations and amplitudes xs .

The difference between GESPAR and our sparsity-based Ankylography
algorithm is that our problem contains constraints on the sub-vector xj , which
GESPAR does not have. Consequently, we apply GESPAR to every sub-vector xj

separately and select the best choice. Another difference is that we calculate the
gradient of the cost function after zeroing for every index ij.
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